Genome-Wide Scan Informed by Age-Related Disease Identifies Loci for Exceptional Human Longevity
نویسندگان
چکیده
We developed a new statistical framework to find genetic variants associated with extreme longevity. The method, informed GWAS (iGWAS), takes advantage of knowledge from large studies of age-related disease in order to narrow the search for SNPs associated with longevity. To gain support for our approach, we first show there is an overlap between loci involved in disease and loci associated with extreme longevity. These results indicate that several disease variants may be depleted in centenarians versus the general population. Next, we used iGWAS to harness information from 14 meta-analyses of disease and trait GWAS to identify longevity loci in two studies of long-lived humans. In a standard GWAS analysis, only one locus in these studies is significant (APOE/TOMM40) when controlling the false discovery rate (FDR) at 10%. With iGWAS, we identify eight genetic loci to associate significantly with exceptional human longevity at FDR < 10%. We followed up the eight lead SNPs in independent cohorts, and found replication evidence of four loci and suggestive evidence for one more with exceptional longevity. The loci that replicated (FDR < 5%) included APOE/TOMM40 (associated with Alzheimer's disease), CDKN2B/ANRIL (implicated in the regulation of cellular senescence), ABO (tags the O blood group), and SH2B3/ATXN2 (a signaling gene that extends lifespan in Drosophila and a gene involved in neurological disease). Our results implicate new loci in longevity and reveal a genetic overlap between longevity and age-related diseases and traits, including coronary artery disease and Alzheimer's disease. iGWAS provides a new analytical strategy for uncovering SNPs that influence extreme longevity, and can be applied more broadly to boost power in other studies of complex phenotypes.
منابع مشابه
A genome-wide scan for linkage to human exceptional longevity identifies a locus on chromosome 4.
Substantial evidence supports the familial aggregation of exceptional longevity. The existence of rare families demonstrating clustering for this phenotype suggests that a genetic etiology may be an important component. Previous attempts at localizing loci predisposing for exceptional longevity have been limited to association studies of candidate gene polymorphisms. In this study, a genome-wid...
متن کاملA Genome-Wide Study Replicates Linkage of 3p22-24 to Extreme Longevity in Humans and Identifies Possible Additional Loci
BACKGROUND Although there is abundant evidence that human longevity is heritable, efforts to map loci responsible for variation in human lifespan have had limited success. METHODOLOGY/PRINCIPAL FINDINGS We identified individuals from a large multigenerational population database (the Utah Population Database) who exhibited high levels of both familial longevity and individual longevity. This ...
متن کاملHigh-Density Genomewide Linkage Analysis of Exceptional Human Longevity Identifies Multiple Novel Loci
BACKGROUND Human lifespan is approximately 25% heritable, and genetic factors may be particularly important for achieving exceptional longevity. Accordingly, siblings of centenarians have a dramatically higher probability of reaching extreme old age than the general population. METHODOLOGY/PRINCIPAL FINDINGS To map the loci conferring a survival advantage, we performed the second genomewide l...
متن کاملWhole Genome Sequences of a Male and Female Supercentenarian, Ages Greater than 114 Years
Supercentenarians (age 110+ years old) generally delay or escape age-related diseases and disability well beyond the age of 100 and this exceptional survival is likely to be influenced by a genetic predisposition that includes both common and rare genetic variants. In this report, we describe the complete genomic sequences of male and female supercentenarians, both age >114 years old. We show t...
متن کاملUnveiling the genetic loci for a panicle developmental trait using genome-wide association study in rice
Panicle size has a high correlation with grain yield in rice. There is a bottleneck to identify the additional quantitative trait loci (QTL) for panicle size due to the conventional traits used for QTL mapping. To identify more genetic loci for panicle size, a panicle developmental trait (LNTB, the length from panicle neck-knot to the first primary branch in the rachis) related to panicle size ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2015